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ABSTRACT
This paper presents a new hybrid energy harvesting on electromagnetic solar for wireless 
energy harvesting of ambient from sensors of low-power devices. The axial ratio (AR) 
requirements produce Left-Hand Circular Polarization (LHCP) and Right-Hand Circular 
Polarization (RHCP) and simultaneously produce a 90-degree phase difference during 
energy harvesting, adopting a new design in designing a dual-feed broadband circular 
polarized (CP) antenna. To get the frequency band 2.3–2.4 GHz, we propose a C-Slot 
antenna with a circular patch dual feed. To estimate the diversity of the phase and magnitude 
output of the feed configuration under AR value, we used a 50 Ohm feed network output 
of the characteristic analysis for a dual feed CP antenna. An Axial ratio frequency range 
of less than 3 dB is achieved using polarization analysis with different branch channel 
couplers. To produce a DC output voltage, a high-frequency rectifier circuit embedded 
with a thin-film solar cell on the antenna is then connected to two T-junction power 
divider rectifiers, resulting in a high-efficiency design. A complete system-level analysis 
will include multiple signal classification methods of powered ambient RF energy using 
a wireless energy harvesting array that proposes a compact structure and demonstrates 

optimal configuration. Reliable operation in 
typical indoor environments indicates a self-
contained sensor Node. Therefore, it has 
significant implications for powering small 
electronics and wireless sensor applications 
independently of the IoT Network or 
real implementation telecommunications 
industry.

Keywords: CP antenna, hybrid energy harvesting, 

wireless sensing 
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INTRODUCTION

Hybrid electromagnetic solar energy harvesting (HES-ER) has become a promising solution 
to next-generation power of wireless communication, such as sensor nodes in wireless 
sensor networks and self-supporting Internet of Things (IoT) devices that recognize 
the latest research developments with energy harvesting techniques of radio frequency 
combining thin-film solar cells (Kim et al., 2019; Reynaud et al., 2017; Yuwono et al., 
2015;). The HES-ER technique utilizes ambient and solar power to enable wireless devices 
to harvest solar and electromagnetic energy from RF signals (Pal et al., 2021). Ambient 
HES-ER is a green renewable energy solution that has attracted many researchers despite 
the great challenge of low incident power for the simultaneous and integrated design of 
HES-ER. 

So, to increase the demanding requirements of the power ambient on the rectenna 
HES-ER system, research has been carried out for useful options regarding reliability and 
sustainability (Bahhar et al., 2020b; Wagih et al., 2021). The previous research has antennas 
with linear polarization, which are incapable of accommodating various polarizations 
caused by fading compared to CP antennas. Additionally, the antenna structure arrangement 
in the previous research did not mutually support the RF and solar energy harvesters, which 
are not situated in the same layer and have antenna impedance that needs to be matched 
(Mujahidin & Kitagawa, 2021a; Mujahidin & Kitagawa, 2021b).

This paper presents a hybrid electromagnetic solar energy harvesting design for ambient 
over a 2.3–2.4 GHz frequency band. It proposed a resonance structure-based matching 
stub. Circular polarization (CP) HES-ER strategically uses three layers of semiconductors 
to make up the antenna to achieve an axial ratio below 3 dB, a radiation pattern directional 
with many beams, and a relatively high gain (Hernowo et al., 2022; Hidayat et al., 2008). 
The integrated CP Antenna is exceptionally low-profile and compact, outperforming the 
existent HES-ER using a much more complex configuration. Furthermore, the applied 
array rectenna can be comfortably integrated into any embedded circuit board-based 
sensor device with mutually supporting performance layers in a single circuit board layer 
(Bahhar et al., 2020a; Bougas et al., 2021). More importantly, the simple design’s overall 
circuit structure indicates that an antenna’s impedance is tuned directly to serve a conjugate 
match with the impedance rectifier input in the expected working frequency under different 
input power and impedance matches between circuits (Mujahidin et al., 2020; Prasetya 
& Mujahidin, 2020). 

MATERIALS AND METHODS

C-Slot CP Antenna HES-ER Sensor Circuit Design

The block diagram illustration of the C-Slot CP Antenna HES-ER Sensor Integrated Circuit 
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consists of a single circular antenna element with two output feeds connected linearly and 
directly to the sensor circuit and an energy harvester with an output impedance of 50 ohms 
(Figure 1). The configuration feed element uses a T-junction signal divider so that the CP 
antenna produced four outputs with the ability to harvest energy and produce phases with 
a 90-degree difference as a passive sensor element.
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Figure 1. Block diagram of the circuit structure

The design of each component of the block considers the sustainability of the circuit 
with a model of one source of electromagnetic energy and two sources of solar energy. In 
the block diagram, the two solar sources take the position separately to show that the solar 
harvesting system still exists as a design with the antenna, but on the implementation of 
solar cells attached and integrated with the circuit C slot CP antenna (Bulu et al., 2006; 
Martinez et al., 2020). The connection between blocks can connect two models, the 
integrated circuit sensor and the SMA connector, on the energy harvesting system with a 
configured impedance matching.

C-Slot CP Antenna

Design C Slot CP Antenna consists of two-line feeds that connect based on the optimization 
of the antenna with a circular patch to produce an AR of less than 3 dB to produce circular 
polarization. The circular patch configuration optimizes by shifting the position of the via as 
a feed connector around the disk side surface based on the propagation model calculations 
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on the antenna radiating element (Bai et al., 2020; Liu et al., 2018; Prasetya & Mujahidin, 
2020). This optimization has the consequence of a continuous propagation change process 
on the disk surface so that symmetrically, the two probes can generate LHCP on the left 
and RHCP on the right. Add a C-slot antenna design to increase the sensitivity to circular 
polarization waves and optimize the antenna’s working frequency. In our design, the 
receiving antenna’s C slot and the asymmetric coupler circuits print on a single layer of 
partially grounded phenolic white paper substrate (εr = 4.2, tanδ = 0.0027). The complete 
C-Slot CP Antenna-Integrated Asymmetric Coupler design is shown in Figure 2.

Optimizing the antenna's shape and ground dimensions in designing working frequency 
as antenna performance is a mathematical approach to shift the resonance frequency to 
patch and slot dimension changes. The mathematical approach of the C slot is one of the 
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Figure 2. The structure design of C-slot CP antenna-integrated asymmetric coupler block diagram of the 
circuit structure
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most crucial performance optimizations to improve accuracy and resonant frequency 
shift. The classification is based on the width of the slot dimensions and CSt = Cso-Csi to 
determine the distance between the inner and outer radius to the main patch with the slot 
position on the ground antenna. The slot dimension change accuracy is 0.0001 m with a 
tolerance value of 5%. 

Harvesting Circuit

The circuit harvesting configuration design optimizes by maximizing the available 
output power of the energy harvester by modeling the appropriate impedance at each 
transmission circuit. Therefore, the chosen design is a circuit voltage doubler proven 
effective in collecting RF and solar energy. So, as performance optimizes harvesters 
using a voltage multiplier, it is necessary to understand the stress multiplier process—the 
match of impedance between the harvester and the load. The harvesting part employing 
a stress multiplier applies the operation to the stress multiplier design with a freestanding 
inductive harvester based on the analysis design (Jones et al., 2018; Chen et al., 2022). It 
drives a monitoring sensor of wireless conditions using energy to extract from the magnetic 
field of ambient power frequency in an RF environment. The approximation of harvester 
calculation to the inductance LAt in step doubler with the resistance RAt in Figure 3 using 
the coil impedance. Analysis at the operating frequency F, where = 2πf expresses the 
impedance in Figure 3.
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Figure 3. Harvester impedance of circuit configuration

This analysis applies to harvester designs using multipliers at the operating frequency 
in imaginary and real terms of components representing harvester impedance. An antenna 
is a source of AC voltage in ambient space, where at VAt = Vin sin(ωt-θ), in cycle with the 
impedance of coil impedance following Equation 1.

                        (1)

Vin is the voltage of the open circuit that will turn up across the coil when positioned 
in the same magnetic domain; it is the frequency dominant in the magnetic domain through 
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which the antenna collects the energy and the phase shift between the harmonic base and 
the magnetic domain of the SMS 7750 Schottky diode. The series circuit with the antenna, 
Capacitor CAt has two roles: (1) it compensates for the self-inductance of the antenna, and 
(2) it is also in the multiplier circuit, which is the first capacitor. The Ccp is a connection of 
capacitor at the multiplier output to provide energy storage for the density of low magnetic 
periods flux while also serving as a capacitor of smoothing for the multiplier (Mitani et 
al., 2017; Mustafizur Rahman et al., 2020; Sonalitha et al., 2020). 

The diode for the multiplier is the SMS 7750 Schottky diode, functioning as a low 
conduction loss. The harvester in Figure 4 provides power to the resistive load RLd, while 
the leak resistor R represents the leakage through D1, D2, Ccp, and parallel to RLd. It 
will also be the capacitance of the diode load, but this has an insignificant impact on the 
circuit’s action as per the frequency specifications of the diodes, which is involved in most 
energy-harvesting multistage applications with the whole multistage circuit.
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Figure 4. Harvesting multistage circuit configuration
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The energy harvester in this work uses a 3-stage voltage doubler by accumulating 
in parallel with the coaxial connection with the solar cell integration (Figure 4). A single 
frequency dominates the design frequency in the circuit according to the antenna as a source 
with an AC harvesting source. Furthermore, in multistage operation, the AC surge harvester 
applied to a machine is dominated by a single band, although this band can often diverge 
with time. The output of the sine wave of the harvester goes to the voltage multiplier input. 
During the half-cycle negative, D1 establishes, so the voltage builds up on CAt. 

During the half-cycle positive, the D2 charge transfers from CAt to Cfd. The circuit 
shows that both diodes cannot conduct simultaneously and will continue to increase to the 
next stage. The capacitor values are selected with values of 100µf and 10pf, so the charge 
time constant is much more extended than the input sine wave period (Bhattacharjee et al., 
2018). Therefore, based on the analysis of the circuit construction method, determining 
the value of each component is based on the analysis in Figure 3, and then optimization is 
performed in the research to obtain the values of components that yield the highest power 
output (Mujahidin & Kitagawa, 2023).

To confirm the impedance output for the multiplier and the harvester, we analyze the 
circuit for an equilibrium state, where the power that will produce the harvester is equal 
to the power delivered to the RLd. With a magnetic flux density, the forward conduction 
loss in the SMS 7750 Schottky is a few W, in diversity to the loss between 10 W and a 
few mW. The diode conduction loss is therefore neglected in the analysis because it has a 
minimal value and is within the tolerance of the transmission voltage.

RESULTS AND DISCUSSIONS

C-Slot CP Antenna

A polarizing dual-feed C-Slot CP antenna 
with a configuration and a photo of the 
antenna fabrication is in Figure 5. The 
implementation of the optimized antenna 
configuration is in caption 1. The antenna 
size is 37.8 mm × 40.4 mm × 1.6 mm. A 
feedline microstrip characteristic impedance 
of 50 excites the antenna. Four branches 
propagate RF-AC waves as sensors and 
harvest energy divided with the feedline. 
The four branches have the same width as 
the microstrip feedline with a T-junction 
configuration.

Figure 5. Fabrication of C-Slot CP antenna
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The previous design report shows the impact of circular patch and C-slot parameters 
on characteristic impedance bandwidth. So, in this brevity, communication only discusses 
shorted vias and their effects on impedance matching and radiation characteristics. The 
antenna configuration was measured using Rhode and Schwarz ZVL Network Analyzer 9 
KHz–13.6 GHz. The first is the characteristic impedance bandwidth of a dual-feed circular 
patch antenna and a C-slot with a via-hole connection in Figure 6. Bandwidth yields about 
230 MHz (11%), about 2.4 GHz focus working frequency with a 2.35 GHz to 2.45 GHz 
frequency range.
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Figure 6. S parameter of C-slot CP antenna

The antenna element in the implementation has a symmetrical configuration to get a 
microstrip antenna with CP operation. Each fed and via hole position in this work is placed 
symmetrically to provide the wave propagation impulse needed to produce an axial ratio 
with a vertical and horizontal linear ratio below 3 dB. The proposed antenna’s gain and 
axial ratio on antenna parameter results at the resonant frequency of 2.3–2.4 GHz in Figure 
6. With an effective bandwidth of 24%, in Figure 7, the antenna exhibits complete coverage 
at the frequency range with AR < 3 and a gain power level of 5.23 dB in the coverage 
field (Yuwono & Mujahidin, 2019; Zhang et al., 2022). The dual-feed configuration of a 
double C slot was developed to meet the requirements for impedance bandwidth, circular 
polarization features, 3 dB beamwidth with the dual feed technique, and antenna material 
with a low-cost profile.



C-Slot CP Antenna for Hybrid Energy Harvesting and Wireless Sensing

PREPRINT

Figure 7. Gain level-axial Ratio of C-Slot CP antenna

Stage Energy Harvester on Hybrid Electromagnetic Solar and Wireless Sensor

The test field produces periodic transmission of electromagnetic waves with different 
power levels with the same frequency, namely 2.4 GHz, so that the test configuration can 
represent the ambient propagation empirically with these variables. The spectrum levels are 
9.57 dBm, 0.27 dBm, -8.4 dBm, -16.8 dBm, and -31.32 dBm. After setting up the spectrum 
level configuration, the thin-film solar cell test on the energy harvesting circuit needs to 
be measured as a simultaneous integration of two energy sources. Still, the solar cell test 
setup needs to be measured independently first to identify the process of generating solar 
energy on the circuit with a high level of illumination as the main variable to describe 
the ability of the voltage to stream in the circuit (O’Conchubhair et al., 2017; Yan et al., 
2021). Figure 8 represents the light lumination value on thin-film solar cells’ exposure to 
the output and electromagnetic integration.

Figure 8 shows a stable voltage increase with increasing luminance for solar energy 
generation. Then, it is essential to measure RF energy independently. RF energy radiates 
and transmits isotropics evenly in the area according to the test variable with maximum 
effectiveness of the propagation power level of 30 dBm in the test field. The energy 
harvesting circuit uses a configuration with a constant resistance value, so the main focus 
of testing is high power. 

1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 3.00

-2

0

2

4

6

8
Po

we
r G

ain
(d

B)

Frequency(GHz)

 Axial Ratio(dB)
 Gain level(dB)
 Maximum Circular Polarization(dB)



Irfan Mujahidin, Sidiq Syamsul Hidayat, Muhamad Cahyo Ardi Prabowo and Akio Kitagawa

PREPRINT

CONCLUSION

This study’s compact C-slot CP antenna focuses on the structure and configuration of the 
new energy harvesting using hybrid electromagnetic solar in the wireless energy harvesting 
of ambient from low-power device sensors. The system configuration has a C-slot antenna 
with a circular patch dual-feed frequency band of 2.3–2.4 GHz. C-slot CP Antenna has 
a wideband circular polarized (CP) dual-feed adopted for axial ratio (AR) requirements, 
producing LHCP and RHCP and a 90-degree phase difference simultaneously during energy 
harvesting. The approximation function determines the variance of the output phase and 
magnitude of the feed configuration under the needed AR by examining the 50 Ohm feed 
configuration output characteristics for a dual feed CP antenna. The analysis shows that 
several branch channel couplers can individually attain an AR bandwidth of less than 3 dB, 
with a directional radiation pattern and a high gain value above 5 dBm, with an integrated 
reflector system optimization. 

Furthermore, a high-frequency rectifier circuit embedded with a thin-film solar cell 
on the antenna then connects two rectifiers that divide the power T-junction to design an 
output voltage of high-efficiency DC. In the measurement and analysis of the configuration 
structure, the maximum voltage value is 1.76 V at the integrated source in the hybrid 
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solar electromagnetic harvesting configuration. With a compact energy harvesting and 
wireless sensor structure, to make a significant improvement to the wireless sensor system 
with a complete communication system-level analysis in an electromagnetic propagation 
environment using the multiple signal classification method of powered ambient RF energy, 
the independent sensor node demonstrates reliable operation in an indoor environment. 

Therefore, it has significant implications for powering small electronics and wireless 
sensor applications independently of the IoT network or real-world telecommunications 
industry, so this prototype model is very efficient in energy harvesting using hybrid 
electromagnetic solar and wireless sensing processes. From this work, future research can 
be proposed in the form of increasing the power that can be produced by re-optimizing the 
voltage doubler circuit. In this research scheme, it is also necessary to carry out a more 
in-depth analysis regarding propagation analysis in communication networks apart from 
its function as energy harvesting.
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